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Abstract

Software fault prediction is used to predict faults and defects in a software. It is a

basic step in software quality assurance process. The prediction of faults depends

upon the software metrics which have several types. Most common type of soft-

ware metrics are code metrics and process metrics. Calculating software metrics

from a software and then using them to predict faults in software is an expensive

process in terms of computation power and time. Reducing the amount of software

metrics to use only important metrics can help perform fault prediction process

efficiently while using fewer resources. Previous studies also show that the regres-

sion problems in SFP are not investigated as much as classification problems and

process metrics are also rarely used as compared to code metrics. In our study, we

have addressed this issue by selecting most influential code and process metrics for

prediction of number of software faults. Wrapper based feature selection method

is applied on five public datasets having code and process metrics as features and

the obtained subsets of both types are added to form hybrid metrics set. Then

this hybrid metrics set is used to evaluate and predict number of faults in software

by applying random forest as a ML model. Different other types of evaluations

were also performed which include metric type (process and code) comparisons,

category wise comparison and individual metric comparison. The results show

that selected hybrid set obtained using wrapper subset selection performed very

well as compared to all metrics set for predicting number of faults and process

metrics performed better than code metrics.

Key Words: software fault prediction, software defect prediction, process met-

rics, code metrics, number of faults, machine learning, feature selection paths,

control flow graph
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Chapter 1

Introduction

Software fault prediction is applied to identify faulty modules in a software. A

software usually contains several faults and bugs when it is first coded. Software

developers apply different fault prediction techniques to identify and remove these

faults before and after the software is available to end user. This process continues

until all known faults and bugs are dealt with and it is termed as software quality

assurance (SQA) [1].

Faults or bugs in a software can render it useless and inconvenient for end users. In

severe cases, it can lead to important data loss and/or failure of software function-

ality. The faulty modules that are identified using fault prediction techniques are

analyzed and the predicted faults are removed by software developers. This way

the quality and reliability of the software is improved. Thus, making it trustworthy

and easier to use for end users.

Software fault prediction is carried out using different types of software metrics.

These software metrics are invoked as features in training different types of ma-

chine learning techniques. The output of these machine learning models is pre-

diction of software faults. Depending on the type of outcome of ML models, the

fault prediction process can be divided into two categories. The most common

type of SFP is classification of faulty modules. In classification, the output of ML

model is binary class which labels that software module as faulty or non-faulty. In

1
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this way, the modules labeled as faulty are identified and edited/improved. In or-

der to perform classification of software faults, appropriate classification machine

learning techniques are applied as ML models.

The second type of fault prediction is regression. In regression, the output of ML

model gives the number of faults or bugs in the corresponding software module.

In this way, the module is not only classified as faulty but the number of faults

is also identified. Having knowledge of higher and lower fault count in software

modules is important as the developers can target the modules with more faults

on priority. This way efficiency and better utilization of resources can be achieved

which lead to better and rapid software quality improvement. Like classification,

selection of ML models is also important in regression.

1.1 Software Metrics

The software metrics have a history of evolution over a period of time. Among

software metrics, code metrics were one of the pioneer software metrics. Basic

code metrics like McCabe’s metrics were created in 1970s [2]. Most of the code

metrics we use these days were created between 1980s to early 2000s. Researchers

are still coming up with new software metrics to date.

Software metrics can be divided into several types based on the structure and com-

position of software, coding details, history of changes and authors or developers

involved. There are many other types of metrics which are not commonly used in

software fault prediction e.g. network metrics. The metrics which are used com-

monly for software fault prediction are code metrics. Most of the researchers used

variable combinations of code metrics for performing evaluation related to fault

prediction. Code metrics are composed of software metrics which are defined using

structure of code, hierarchy of classes, size of code, inheritance, coupling of classes

and cohesion among class modules etc. There also exist other types of software

metrics like process metrics which are based on changes to a software over time,

age of software, number of developers and authors, lines of codes added or deleted
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etc. The process metrics are not as commonly used as code metrics for software

fault prediction. Although many researchers have used them in their studies, the

ratio of usage of process metrics as compared to code metrics is small. Many

researchers have claimed process metrics to be more informative and meaningful

as well as better predictors of software faults.

1.1.1 Code Metrics

The code metrics are most commonly used by researchers to perform different type

of experiments and analyses in their researches. The reason for wide acceptance is

their proven fault prediction performance and utility as well as easy availability of

datasets containing code metrics. Some common code metrics are object-oriented

metrics [3], Chidamber-Kemerer also known as CK metrics [4], Halstead metrics

[5], McCabe’s complexity metrics [2] and Lines of code (LOC). Moreover, some

metrics introduced later are coupling metrics [6], cohesion metrics [7] and a better

version of object oriented metrics in metrics suite [8]. Object oriented metrics

compiled by [3] contained metrics which measure inheritance, encapsulation and

polymorphism etc. The CK metrics contain metrics related to object-oriented

programming like number of children (NOC), depth of inheritance tree (DIT) and

response for class (RFC) etc. Halstead metrics reflect the complexity measures

of code like number of operators and operators used in a program. McCabe’s

metrics suite contains metrics related to complexity of software and LOC is the

count of coded lines in a software program. The coupling and cohesion metrics

include metrics like coupling between objects (CBO), depth of inheritance tree

(DIT), methods calling current method (fanIn), method calls by current method

(fanOut) and public/private attributes of classes.

1.1.2 Process Metrics

Process metrics are also known as change or developer metrics. This type of

metrics defines the changes occurring to a software along its development and
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entities involved in changes. Some commonly known process metrics are number

of revisions, code churn [9], age of software [10], lines of code added or deleted and

number of authors/developers. More detailed information about metrics used in

our research is given in features section.

Software metrics play vital role in software fault prediction. Acquiring these met-

rics and utilizing them to resolve bugs/issues in a software is a costly process and

require many resources including computation power, human resources and time.

By targeting higher fault count areas of software on priority, developers can make

the software quality assurance method more effective, efficient and less resource

demanding [11].

Many scientists and researchers have investigated software fault prediction by eval-

uating and using different machine learning models for fault prediction, comparing

effect of different type of software metrics on fault prediction, effectiveness of per-

formance measures used in SFP etc.

To our knowledge, a huge portion of research done in this domain is focused on

classification of defect and usage of code base software metrics for prediction. The

impact of different process and change metrics in fault prediction is not as much

researched as of code metrics. Furthermore, the regression methods in SFP for

count models of faults or defects is investigated by fewer and even those few have

used code metrics for the purpose.

In our research, we investigated the impact of process metrics on software fault

prediction. We have identified most important process and code metrics using

wrapper subset selection for calculation of number of faults in a software.

We combined the collected smaller subsets of process and code metrics into hybrid

metrics set and compared results of hybrid feature set with all feature set. We

also studied the effectiveness of categories of process and code metrics as well as

that of single metrics selected in our study.

To summarize our contribution in this research we have compiled some research

questions which are given in section 1.4.
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1.2 Problem Statement

Researchers have been trying to evaluate different types of metrics to find best

and most accurate combinations of metrics for software fault prediction. Also,

they have been trying to minimize the number of software metrics used for fault

prediction because they are expensive to obtain and use for prediction in terms

of computation, manpower and time. From literature review, we found three

issues in software fault prediction which were not investigated thoroughly. The

first is the use of process metrics in SFP which were not investigated as much as

code metrics. The second is the studies on number of software faults (regression

problem) which are also fewer as compared to classification problems. The third

is the evaluation of combined metrics (code and process) for fault prediction and

selection of significant code and process metrics for this purpose. We have tried

to combine and address all these issues in our research.

1.3 Research Questions

RQ1: What is the performance of process metrics as compared to

code metrics in software fault prediction?

To answer this question, we have compared both types of metrics using machine

learning model and results are presented in chapter 4.

RQ2: Which process and code metrics subsets are most important in

terms of performance for prediction of number of faults?

To answer this question, we have listed the process and code metrics selected using

feature selection. We combine these two types into single hybrid metric set and

also present their performance evaluation in results section of chapter 4.

RQ3: What is the effectiveness of different categories and individual

selected process and code metrics?
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To answer this particular research question, we divide selected process and code

metrics selected through feature selection into categories and investigate perfor-

mance of these categories with each other as well as performance of individual

selected metrics.

1.4 Contributions

1. First of all, we have identified a most significant subset of process and code

metrics using wrapper selection method for prediction of number of faults.

2. After that, we have designed an effective software faults prediction frame-

work by using hybrid feature set and random forest as machine learning

model.

3. In the next step, we have divided the selected process and code metrics into

categories depending on the type of metrics.

4. At the end, our experimental results prove that selected process metrics

outperformed the selected code metrics.

5. We have found set of seven most important process metrics and set of eleven

most important code metrics for predicting the number of faults.

1.5 Thesis Organization

The rest of study is organized into chapters as follows;

• Chapter 2 surveys the existing work on software fault prediction.

• Chapter 3 discusses the proposed approach and its details.

• Chapter 4 presents the experimental results of proposed approach.

• Chapter 5 concludes the research and furthermore gives some future re-

search directions.



Chapter 2

Literature Review

Chapter 1 provides details on consequences that guide us to define the problem

statement. This chapter focuses on critical analysis of all the state-of-the-art

approaches, as every research study is dependent on the preceding study, that

have already been performed in this area. Lots of researchers have studied and

focused on software fault prediction. A broad variety of literature on software fault

prediction is available which uses various machine learning techniques and software

metrics to predict fault count and fault proneness in a software module. To analyze

and enhance the SFP method, researchers tested various types of software metrics

and machine learning models.

We have compiled research papers in literature review section which are relevant to

our research. These papers can be divided into two basic categories which belong

to code metrics usage and process metrics usage. We have also separated papers

which applied feature selection techniques to enhance software fault prediction

process. These categories are given as follows:

1. Fault prediction by code metrics.

2. Fault prediction by process metrics.

3. Feature selection for SFP.

7
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2.1 Fault Prediction by Code Metrics

Code metrics were mostly used for fault prediction studies because of easy avail-

ability of code metrics based datasets. Most common datasets used in related

studies belong to PROMISE repository which can be accessed publicly worldwide.

Following are some papers that experimented using code metrics and are related

to our study.

Tibor Gyimothy [12] tested the values of chidamber-kamerer metrics against the

number of faults utilizing various machine learning models to determine the ef-

fectiveness of CK metrics in the Mozilla and Bugzilla datasets for fault detection.

The conclusion was that CBO has given the best prediction performance while the

LOC metric was also good, DIT metric produced insignificant results, and NOC

should not be used to predict fault.

The relationship between the complexity metrics and the number of defects was

studied by Zimmermann et al. [13]. They experimented using datasets from the

eclipse releases 2.0, 2.1 and 3.0. They used the spearman linear regression as a

machine learning model for estimating the number of defects and used spearman

correlation between the complexity metrics and the number of defects to compare

relation between them. They concluded that the complexity metrics can be used

to predict defects and the number of defects will be high when the code is more

complex.

Khoshgoftaar et al. [14] presented assessment of five count models for predicting

the number of faults. To build fault count models for two industrial software sys-

tems, they used different complexity and object-oriented metrics. Their research

reveal that zero-inflated and hurdle models of negative binomial regression worked

stronger for fault estimation than other count models.

Zhang et al. [15] examined the interaction between LOC and software defects.

They proposed that one can use defects measured from a limited number of big

software components to reliably forecast defects in general. Spearman correlation

ranking was used to calculate association between LOC and faults in three variants
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of eclipse and NASA datasets. Five machine learners were used to identify LOC

(range) as defective / non-defective. They concluded that lines of code is an

essential parameter for software defect prediction and can be used to construct

reliable defect prediction models.

Marian et al. [16] assessed the effectiveness of code metrics against software fault

count. They designed a Metric Calculation Tool (CKJM) and used it to extract

lines of code and complexity metrics from eleven datasets to determine the rela-

tionship between metrics and number of faults. They used Pearson’s correlation to

explore the correlation between software metrics and the number of defects. They

deduced that significant evaluation and testing cost can be saved by evaluating

classes with a larger number of defects.

Erturk and Sezer [17] have implemented a Fuzzy Inference system prediction

model. Their model utilizes specialist expertise and details on previous iterations

to start learning when data is not present and proceeds to use a data dependent

method when adequate data is available for the classification of defects. They

used PROMISE datasets to build and test their models which were composed of

code metrics. They used area under the curve (AUC) as Their performance mea-

sure. They concluded that their proposed prediction method can be applied to

successfully predict software faults.

Fagundes et al. [18] applied five regression approaches to predict number of faults

in a software. They created two step model that initially classify the results as

faulty/non faulty and then predict the number of faults if results are found to be

faulty. Moreover, they used NASA datasets having lines of code, complexity and

cohesion metrics. They reported that their method surpassed other methods used

in their research.

Rathore et al. [19] predicted number of software defects using ensemble approach

based on three regression methods. They used fifteen PROMISE datasets to train

and test their models which were composed of code metrics. Their results showed

that in comparison to single learners, ensemble methods performed very well for

number of faults prediction.
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The ROC framework was used by Shatnawi [20] to define a threshold for soft-

ware modules classification into faulty and non-faulty. They used dataset which

contained code metrics to build and evaluate their model. They also examined

imbalance and the selection of features using ROC analysis.

In one other paper, Rathore and Kumar [21] explored the ensemble methods for

calculating the number of faults in a software, as they suggested that the use of en-

semble methods in such a setting has not been tested. Five different learners were

used to build and evaluate ensemble. They used AAE and ARE as performance

metrics to report and compare results. They used eleven PROMISE datasets

which were based on code metrics for evaluation. They deduced that compared

to individual models, the ensemble method has shown improved performance for

prediction of number of defects.

The significance of inheritance based metrics for software defect classification has

been explored by Rashid et al. [22]. For this reason, they used sixty-five publicly

available datasets having CK and inheritance metrics. The testing models were

divided into two categories, one with inheritance and CK metrics and another

with inheritance metrics only. For evaluation purposes they used artificial neural

networks and used five evaluation metrics to present results. The findings indicate

that the inheritance metrics make an important contribution to the software fault

prediction.

Rizwan et al. [23] assessed the importance of coupling metrics for software de-

fect classification. They investigated seven coupling metrics across eighty-seven

datasets. For machine learning, they used support vector machine. Their findings

demonstrate that three metrics are remarkably significant for defect classification

and they listed coupling metrics according to their rank.

Faruk et al. [24] proposed a new classification model for software defect predic-

tion in their paper. They used artificial neural networks and novel artificial bee

colony algorithm to classify software faults. They used five NASA datasets to

perform their evaluations containing different code metrics and used several clas-

sification related performance measures like accuracy and area under the curve.
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They concluded that their classification performed well and could be used for fault

prediction purposes.

2.2 Fault Prediction by Process Metrics

Process metrics are investigated in fewer studies as compared to code metrics.

Many researchers claim process metrics to be more informative and better predic-

tors than code metrics. Following are some papers that are related to our research

which used process metrics in their studies.

Matsumoto et al. [25] investigated the significance of developer metrics. They used

fifteen code and seven change metrics to propose and evaluate developer metrics.

The Regression and Classification Tree was used to evaluate the relation between

defects in the code and various developer metrics. They found that the incidence

of defects differs from developer to developer and that the modules edited by

different developers can have larger number of defects.

Marian et al. [26] investigated the significance of process metrics for software fault

prediction. They constructed and compared two models based on code and four

change metrics which were number of defects in previous versions, number of dis-

tinct committers, number of revisions and number of modified lines. First model

was built using code metrics only and in second model they added on change met-

ric with code metrics and repeated separately for all four change metrics. They

used Ckjm tool for extracting code metrics and BugInfo tool for change metrics

and number of faults. They performed their evaluations using forty-three pub-

lic and twenty-seven industrial datasets. They applied stepwise linear regression

as machine learning model. Their results showed that number of modified lines

and number of distinct committers are important metrics for fault prediction and

change metrics are equally informative as code metrics.

Kumar et al. [27] have applied Decision Tree Regression for estimating the number

of defects. They performed a comparison between inter and intra release defect
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prediction. The models were built using nineteen PROMISE data sets. Their

results implied that intra-release fault prediction has performed better as compared

to inter-release fault prediction.

Florence et al. [28] employed genetic algorithms to refine features and they used

deep neural networks for fault classification.

They used PROMISE datasets to evaluate their models and accuracy measure

as performance metric. They summarized that their proposed method presented

better results than other classifiers.

2.3 Feature Selection for SFP

Many researchers have applied different feature selection techniques to improve

fault prediction process. Some researchers have also performed comparisons of

different feature selection methods used in software fault prediction. We have

summarized and listed the following research papers which involved feature selec-

tion.

Laradgi et al. [29] introduced an algorithm for classification of software defects

having two types. They combined feature selection with ensemble learning to

perform the classification. The first type of algorithm used feature selection with

ensemble learning for classification and the second type deals only with ensemble

learning (without feature selection).

They evaluated Greedy Forward Selection and Pearson’s Correlation and found

that greedy selection produced better results than Pearson’s Correlation. They

performed their experiments using multiple NASA datasets having code metrics.

They concluded that their proposed algorithm with feature selection and ensemble

approach performed remarkably for classification of software defects.

Wang et al. [30] performed a comparison of different feature ranking techniques

for classification of software defects. They used ensemble learning on 16 pub-

lic datasets from eclipse, NASA and telecommunication software system having
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multiple code metrics. They used different filter base ranking techniques in combi-

nation with näıve bayes classifier to build and evaluate seventeen ensembles. They

concluded that individual ensembles do not outperform others but few ensembles

have equally better performance as compared to remaining models.

Khoshgoftaar et al. [31] compared four combinations of feature selection and

modeling techniques for software defect classification. They used feature selection

and data sampling to improve the performance of their classifiers. They performed

their experiments using K-Nearest Neighbors and Support Vector Machine on

nine PROMISE datasets and used Area Under the Curve as their performance

evaluator. They concluded that sampling has better effect on feature selection

and does not play important role in defect prediction.

In another paper [32], khoshgoftaar et al. investigated the impact of data sam-

pling and attribute selection techniques for software defect classification. They

compared five variations of data having sampling/non sampling and attribute se-

lection/no attribute selection as variation criteria. They used eight public datasets

from NASA to perform their evaluations. They concluded that class balancing

plays an important role in improving classification prediction performance with

attribute selection having very little improvement as compared to balancing.

Wahono et al. [33] investigated the effect of particle swarm optimization on soft-

ware fault prediction. They used particle swarm optimization for feature selection

and combined it with bagging to perform their evaluations. They used eleven

classifiers in their bagging ensemble and constructed models using nine NASA

datasets having code metrics. They concluded that their classification models

outperformed significantly.

Wang et al. [34] combined attribute ranking with ensemble learning for classi-

fication of software faults. They compared the performance of six filter-based

ranking techniques using their ensemble. They used three NASA datasets to per-

form evaluations and used area under the curve as their performance measure.

They concluded that ensemble methods performed better for fault prediction and

different ranking techniques have different impact on the prediction process.
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Catal et al. [35] evaluated the impact of dataset size, feature set and attribute

selection methods for software fault prediction. They constructed nine classifica-

tion models using five public NASA datasets having different code metrics. They

used area under the curve and accuracy as their performance measure. According

to them, näıve bayes performed better when used for small datasets and random

forest is best suited for large size datasets.

Chao et al. [36] proposed a novel feature selection method called feature selection

using clusters of hybrid data (FeSCH). Their method used density of clusters and

ranking of features for feature selection. They used their selection technique to

evaluate cross project defect prediction. They used AEEEM and Relink CPDP

datasets having different type of code metrics and used F-measure as their perfor-

mance measure. Their results showed that FeSCH performed better as compared

to other feature selection methods and its performance was independent of the

classifier used.

Bayesian network has been used by Okutan and Yildiz [37] to select essential Soft-

ware metrics for classifying defect-prone program modules utilizing object-oriented

approaches. They used nine PROMISE registry datasets to perform evaluations.

Their study also identified two new metrics that are number of developers and

lack of quality coding. They stated that RFC (Response for Class), LOC (Lines

of Code) and LCQ (Lack of Coding Quality) are very important metrics for defect

prediction.

Through the application of filter based feature selection for defect proneness clas-

sification, a smaller subset of code metrics was selected by He et al. [38]. They

further reduced metrics based on top-k and redundancy criteria. Thirty-four

PROMISE databases having code metrics were used in their study. They evalu-

ated their selected feature set using six machine learning classifiers and presented

the results through recall, F-measure and precision.

Maqsood et al. [39] evaluated the importance of nine classification models of

machine learning. They used SMOTE and re-sampling to balance the datasets

and selected important metrics based on Fisher linear discrimination analysis.
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They chose top four classifiers and evaluated fifteen PROMISE datasets which

were composed of code metrics. They presented results by recall, precision and

F-measure performance metrics.

Turabieh et al. [40] used layered recurrent neural networks in a proposed attribute

selection method to decrease the number of code metrics for software defect clas-

sification. Nineteen PROMISE datasets were used for evaluation and results were

presented using AUC. They concluded that their proposed method performed

much better when compared to five other ML techniques. A comparison of all the

papers mentioned in this chapter is given in the following table:

Table 2.1: Literature Analysis

Sr

#

Paper Metrics SFP

Method

ML Algo/model Dataset

1. Tibor Gyi-

mothy [12]

Code Regression Linear Regression,

Decision Tree, Neu-

ral Network

Mozilla,

Bugzilla

2. Zimmermann

et al. [13]

Code Regression Linear Regression Eclipse

2.0,2.1,3.0

3. Khoshgoftaar

et al. [14]

Code Regression Zero-inflated, hur-

dle negative bino-

mial regression

Industrial

4. Zhang et al.

[15]

Code Classification Näıve Bayes, Logis-

tic Regression, Neu-

ral Networks

NASA

5. Marian et al.

[16]

Code Regression Stepwise Linear Re-

gression

NASA



Literature Review 16

Sr

#

Paper Metrics SFP

Method

ML Algo/model Dataset

6. Erturk et al.

[17]

Code Classification Fuzzy Inference PROMISE

7. Fagundes et

al. [18]

Code Regression Zero-inflated Pois-

son Regression, and

Hurdle Regression

NASA

8. Rathore et al.

[19]

Code Regression Linear Regression,

Multi Layer Percep-

tron, Näıve Bayes

Regression

PROMISE

9. Shatnawi [20] Code Classification ROC Analysis N/A

10. Rathore et al.

[21]

Code Regression Linear Regression,

Decision Tree Re-

gression, Genetic

Programming

PROMISE

11. Rashid et al.

[22]

Code Classification Artificial Neural

Network

N/A

12. Rizwan et al.

[23]

Code Classification Support Vector Ma-

chine

N/A

13. Faruk et al.

[24]

Code Classification Artificial Neural

Network

NASA
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Sr

#

Paper Metrics SFP

Method

ML Algo/model Dataset

14. Matsumoto et

al. [25]

Process Regression CART N/A

15. Marian et al.

[26]

Process Regression Stepwise Linear Re-

gression

N/A

16. Kumar et al.

[27]

Process Regression Decision Tree Re-

gression

PROMISE

17. Florence et al.

[28]

Process Classification Genetic Algo-

rithms, Neural

Networks

PROMISE

18. Laradgi et al.

[29]

Code Classification Greedy Forward

Selection, Pearson

Correlation

NASA

19. Wang et al.

[30]

Code Classification Näıve Bayes NASA,

Eclipse

20. Khoshgoftaar

et al. [31]

Code Classification KNN, Support Vec-

tor Machine

PROMISE

21. khoshgoftaar

et al.[32]

Code Classification N/A NASA

22. Wahono et al.

[33]

Code Classification Particle Swarm Op-

timization

NASA
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Sr

#

Paper Metrics SFP

Method

ML Algo/model Dataset

23. Wang et al.

[34]

Code Classification Ensemble Learning NASA

24. Catal et al.

[35]

Code Classification Näıve Bayes NASA

25. Chao et al.

[36]

Code Classification FS using Clusters of

Hybrid Data

AEEEM,

Relink

26. Okutan and

Yildiz [37]

Code Classification Bayesian Network PROMISE

27. He et al. [38] Code Classification top-k features PROMISE

28. Maqsood et

al. [39]

Code Classification Fischer Linear Dis-

criminant Analysis

PROMISE

29. Turabieh et

al. [40]

Code Classification Layered Recurrent

Neural Networks

PROMISE

After evaluation of state-of-the art approaches we concluded that although soft-

ware fault prediction is thoroughly addressed in research and many researchers

have performed studies to evaluate different type of fault prediction methods,

there are some areas of Software Fault Prediction which are not addressed much

and need more investigation. The first area is the use of process metrics which

were not used as much as code metrics in studies. Second area is the evaluation of

regression techniques in Software Fault Prediction for number of faults prediction
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which also need more investigation. The third area is the combined use of code

and process type of metrics and applying feature selection to improve prediction

process using combined selection of both type of metrics. Therefore, we have

aimed our research on all these areas.



Chapter 3

Proposed Approach

In this chapter we discuss about the methodology and techniques used in our

study. Here we explain the research method used in our study, features and types

of features used in our experiments, description of datasets used, machine learning

models and performance metrics used in our research.

3.1 Research Methodology

To study the significance of process metrics for predicting the number of faults

in a software system and to identify the most important and influential software

metrics (both process and code metrics) that affect the fault prediction process,

we formed an approach in which two steps are performed.

In the first step, we merged instances from all five datasets into a single dataset to

increase number of instances and then used wrapper subset selection technique to

select best feature subsets from process and code metrics respectively. The output

of feature selection method results in subset of seven out of fifteen process metrics

and subset of eleven out of seventeen code metrics.

In the second step, we added both types of selected metric subsets to make hybrid

set of metrics which was then used for prediction of number of faults. We also

20
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divided selected process and code metrics into categories and evaluated models for

categories as well as performance of single metrics from selected process and code

subsets. The results of these experiments are described in detail in results and

discussions chapter.

A diagram depicting the overall steps of our proposed framework (feature selection

and prediction process) is presented in Figure 3.1.

Figure 3.1: Software Fault Prediction Framework

3.2 Features

In this section, we will give brief description of features that are used in our

research. The features which we used in our research are two type of software

metrics namely code and process metrics. Each of these types contain multiple

metrics. The software metrics calculated by using software’s coding structure are

called code metrics. They consist of information of code properties, size of code

and structure of code. The other type of software metrics used in our research

are process metrics which are based on edits, revisions and changes to a software.

Below is detailed description of process and code metrics used in our study.
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3.2.1 Process Metrics

As discussed above, process metrics are calculated using change information of a

software. In our research, fifteen different process metrics are used for experimen-

tation. These metrics contain information about added or deleted lines of code,

code churn, number of authors and number of versions etc. Following is the list

of these fifteen process metrics having name and description:

1. NumberOfVersions: Number of versions produced since the first release.

2. NumberOfFixes: Number of times a module is treated for bug fixing.

3. NumberOfRefactorings: Number of times a module has been refactored.

Refactoring refers to change in code design without changing the output of

the software.

4. NumberOfAuthors: Number of authors who made commits to the soft-

ware module

5. Age: Age of a module since its first release.

6. WeightedAge: Age of a module normalized by added lines of code.

7. LinesAdded: Total number of lines added since last version

8. MaxLinesAdded: Max lines added in all commits.

9. AvgLinesAdded: Average lines added in all commits.

10. LinesRemoved: Total number of lines deleted since last version

11. MaxLinesRemoved: Max lines deleted in all commits.

12. AvgLinesRemoved: Average lines deleted in all commits.

13. CodeChurn: Code churn is the change in code; addition or deletion, over

a specific period of time.

14. AvgCodeChurn: Average code churn per commit.

15. MaxCodeChurn: Max code churn per commit.
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3.2.2 Code Metrics

The second type of metrics used in our study is code metrics. In this study, we

have used seventeen different code metrics for experimentation purposes. These

code metrics consists of lines of code (size), coupling between objects, cohesion

among modules, hierarchy of classes and other object-oriented metrics.

We have listed all seventeen code metrics containing the name and brief description

of each metric as follows:

1. DIT (Depth of Inheritance Tree): Depth of a class within the class

hierarchy from the root of inheritance.

2. FanIn: Number of functions/methods that call a given function.

3. FanOut: Numbers of functions/methods that are called by a given func-

tion.

4. LCOM (Lack of Cohesion Methods): Count of the methods that do

not share variables and fields with other methods.

5. NOC (Number of Children):Number of child classes of a class.

6. NumberOfAttributes: Total number of attributes of a class.

7. NumberOfAttributesInherited: Total number of inherited attributes

of a class.

8. NumberOfLinesOfCode: Total lines of codes in a class/module.

9. NumberOfMethodsInherited: Total number of methods inherited by a

class.

10. NumberOfPrivateMethods: Total number of the private methods in a

class.

11. NumberOfPublicAttributes: Total number of public attributes in a

class.
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12. CBO (Coupling between objects): Measure of modules that can access

a given module and other modules that this module can access.

13. NumberOfMethods: Number of methods or functions in a class.

14. NumberOfPrivateAttributes: Measure of private attributes in a class.

15. NumberOfPublicMethods: Measure of public methods in a class.

16. RFC (Response for Class): Measure of methods that can be accessed

by objects of given class.

17. WMC (Weighted Methods per Class): Measure of complexities of all

methods in a class.

3.3 Experimental Setup

In experimental setup section we discuss the details of datasets and machine learn-

ing model used in our research. The five datasets used here are listed in below

(dataset) section containing number of instances for each dataset as well as their

respective description in a table. Further, we have discussed the machine learning

model and its configuration used for experiments.

3.3.1 Datasets

In our study we have used five datasets containing count of faults/bugs. The

datasets are publicly available and have count of faults as resultant class. These

datasets belong to open source eclipse projects and are presented by [41]. Names

of these datasets are eclipse-jdt, equinox, lucene, mylyn and eclipse-pde. All five

datasets contain process and code metrics as features. There are fifteen process

metrics and seventeen code metrics for each dataset. The information about all

these metrics are discussed in details in features section. These datasets are class

level datasets and each of them has number of faults/bugs as the target class. The
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number of instances for datasets ranges from 324 to 1862 and more details are

given in the following table (Table 3.1).

Table 3.1: Datasets Information

Dataset Description Instances

Eclipse-jdt Java infrastructure of the Eclipse Java IDE 997

Equinox OSGi framework implementation used for all of
Eclipse

324

Lucene Open-source Apache search software 691

Mylyn Task and application lifecycle management frame-
work for Eclipse

1862

Eclipse-pde User interface that provides a set of tools to create
and develop Eclipse plug-ins and features

1497

3.3.2 Machine Learning Model

In this section, we explain the machine learning model used for the experimentation

in our research. Due to its wide acceptance and proven accuracy, we used the

Random Forest as machine learning model for training and testing in our study

[42].

Random forest was introduced in 1995 and developed as a machine learning tech-

nique in 2001. It can be used for both classification and regression learning.

Structure wise random forest is an ensemble method which consists of multiple

decision trees that correspond to separate classes. The output is mode of all trees

for classification and mean of all trees is computed for regression learning.

A basic structural design of random forest is given in the following picture (Figure

3.2):
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Figure 3.2: Random Forest Basic Diagram

3.4 Evaluation Metrics

The performance metrics used in this study are well known metrics to evaluate

the regression results as suggested by prior studies [14]. We have used three

performance metrics in our study. These are Mean Squared Error (MSE) [43],

Root Relative Squared Error (RRSE) and Average Absolute Error (AAE) [44].

3.4.1 Mean Squared Error (MSE)

The mean squared error is widely used as a performance measure in regression

problems. Its formula is given as

MSE =
1

k

k∑
i=1

(Yi−Y
′

i)
2

(3.1)

Where Yi is the vector of observed values and Y
′
i is for predicted values.
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3.4.2 Root Relative Squared Error (RRSE)

The formula for root relative squared error is given as follows:

RRSE =

√√√√∑n
k=1 (Pik−Tk)

2∑n
k=1 (Tk−T)

2 (3.2)

where Pik is predicted value of model i for record k out of n, Tk is target value

and T = 1
n

∑n
k=1 Tk

3.4.3 Average Absolute Error (AAE)

Average absolute error is also used commonly as performance measure in regression

techniques. It was introduced by [44]. The formula for average absolute error is

given as:

AAE =
1

k

k∑
i=1

∣∣∣(Y′

i−Yi)
∣∣∣ (3.3)

Where Yi is the vector of observed values and Y
′
i is for predicted values.
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Results and Discussion

In the previous chapter, we have explained the in-depth details of the proposed

methodology including feature sets, datasets used, machine learning model and

performance metrics used. This chapter focuses on the results that have been

obtained by applying the proposed methodology. Moreover, this chapter is di-

vided into six parts having results from feature selection, performance of selected

hybrid metrics set, comparison and evaluation of types of selected metrics, their

categories, individual selected metrics evaluation and in the last part discussion

and implications.

4.1 Feature Selection

In this part, we discuss the feature selection process used in our research in details.

We have used Wrapper subset selection method for feature selection and random

forest as the induction algorithm for wrapper selection.

Wrapper subset selection was introduced by (Kohavi and John 1997) in 1997

[45]. It is an exhaustive feature selection method which makes all possible feature

subset and use an induction algorithm as its evaluation criteria. Then it evaluates

all subsets of features against the performance measure of induction algorithm and

selects subsets with best results.

28
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The performance metric of the induction algorithm serves as the selection criteria

in wrapper subset selection. The advantage of wrapper subset selection over other

feature selection methods is that it gives improved performance if the count of fea-

tures is large due to its exhaustive search approach but at the cost of computation

power and time.

In our research, the wrapper subset selection method is applied for identification

of most important feature sets from process metrics and code metrics. We have

performed this selection on a combined dataset which was composed of instances

from all (five) datasets. The selected process and code metrics are further used

for evaluation and comparisons.

The selected process metrics are listed in Table 4.1 and selected code metrics in

Table 4.2.

We have also combined selected process and code metrics into hybrid metrics set.

Table 4.1: Selected Process Metrics

Sr. # Type Metric

1. Change
based

Number Of Versions

2. Change
based

Number Of Fixes

3. Change
based

Number Of Refactor-
ing

4. Change
based

AvgCodeChurn

5. Author
based

NumberOfAuthors

6. Age based Age

7. Age based Weighted Age
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Table 4.2: Selected Code Metrics

Sr. # Type Metric

1. Inheritance
based

DIT

2. Inheritance
based

NOC

3. Inheritance
based

Number Of Attributes
Inherited

4. Inheritance
based

Number Of Methods In-
herited

5. Method call
based

Fan In

6. Method call
based

Fan Out

7. Cohesion
based

LCOM

8. Structure
based

Number Of Attributes

9. Structure
based

Number Of Lines Of
Code

10. Access based Number Of Private
Methods

11. Access based Number Of Public At-
tributes

To continue, we arranged the selected code and process metrics category wise

depending on the nature of metrics, as seen in Table 4.1 and Table 4.2. The seven

selected process metrics were divided into three categories namely change based,

author-based, and age-based. The eleven selected code metrics were divided into

five categories which are method call based, inheritance based, structure based,

cohesion based, and access based.
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The composition of all categories of process and code metrics is given in Table

4.1 and Table 4.2. The comparison and significance of these categories is given in

section 4.4 separately for process and code metric categories.

4.2 Predictive Performance Analysis of Hybrid

Metrics

In this part, we evaluated the performance of hybrid subset of process and code

metrics with all process and code metrics set. Random Forest was used as a

machine learning model for experimentation with 10-fold cross validation. The

evaluation was performed using MSE, AAE and RRSE performance metrics. Seven

process and eleven code metrics were selected in feature selection process using

wrapper subset selection which were joined as eighteen selected hybrid metrics.

For comparison all fifteen process and all seventeen code metrics were joined as all

hybrid metrics. Results make it evident that the performance of selected hybrid

set is much better than that of all hybrid metrics which can be seen in Table 4.3.

Results of all five datasets arranged according to three performance measures for

selected hybrid and all hybrid set is given in the following table (Table 4.3):

Table 4.3: Performance Analysis using Hybrid Metrics

Datasets All Hybrid Metrics Selected Hybrid
Metrics

MSE AAE RRSE(%) MSE AAE RRSE(%)

Eclipse-
jdt

0.6331 0.3939 76.3836 0.6147 0.3863 75.2634

Equinox 0.8947 0.5531 64.8926 0.8825 0.5459 64.4451

Lucene 0.2289 0.1884 80.4432 0.2122 0.1805 77.4648

Mylyn 0.3097 0.2608 92.8568 0.3163 0.2545 93.8518

Eclipse-
pde

0.7974 0.3269 93.3838 0.7721 0.3225 91.88
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Figure 4.1: Hybrid Metrics Performance

It can be seen from Figure 4.1 that the selected hybrid metrics set performed

better than all hybrid metrics set for all five datasets.

This results of all the three performance measures were improved in four datasets

and for Mylyn improvement was seen for Average Absolute Error (AAE). The

best improved performance was seen in eclipse-pde in which Mean Squared Error

(MSE) had a difference of 0.0253, Average Absolute Error (AAE) having difference

of 0.0044 and in Root Relative Squared Error (RRSE) difference was 1.5038%.

Following eclipse-pde, eclipse-jdt produced next best results using selected hybrid

metrics with a reduction of 0.0184 in Mean Squared Error (MSE), 0.0076 in AAE

and 1.1202% in Root Relative Squared Error (RRSE). In case of Mylyn, improved

performance was only seen for Average Absolute Error (AAE) having a reduction

of 0.0063.

These results not only prove the importance and effectiveness of feature selection

process for software metrics but also show the significance of selected process and

code metrics which performed better as compared to all process and code metrics

used in this study.
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4.3 Feature Type wise Analysis

In this portion, we present the results of selected process and code metrics com-

pared to all process and code metrics respectively. The selected process metrics

performed better in comparison with all process metrics which can be seen in Table

4.4.

The configuration of experiments is same as before with random forest as machine

learning model and 10-fold cross validation. The results were presented using

Mean Squared Error (MSE), Average Absolute Error (AAE) and Root Relative

Squared Error (RRSE) as evaluation metrics.

The results show that performance was improved for all five datasets when using

selected process metrics set. The most improvement in results was observed for

equinox, eclipse-jdt and lucene where highest difference was seen in equinox’s Mean

Squared Error (MSE) of 0.0265 followed by eclipse-jdt having difference of 0.0200

in Mean Squared Error (MSE). For Mylyn the reduction in Average Absolute

Error (AAE) was observed having difference of 0.0007.

We have also presented these results using AAE measure in Figure 4.2.

Table 4.4: Performance Analysis using Process Metrics

Datasets All Process Metrics Selected Process Metrics

MSE AAE RRSE(%) MSE AAE RRSE(%)

Eclipse-
jdt

0.6727 0.4129 78.7316 0.6527 0.4032 77.5594

Equinox 1.0084 0.5697 68.8938 0.9819 0.5569 67.9795

Lucene 0.2161 0.1713 78.1754 0.1977 0.1623 74.7697

Mylyn 0.3146 0.2616 93.5918 0.3342 0.2609 96.4592

Eclipse-
pde

0.8317 0.3412 95.3763 0.8245 0.3294 94.9531
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Figure 4.2: Selected Process Metrics Performance

Continuing the evaluation of selected metric types, we also compared the selected

code metrics set (eleven metrics) with all code metrics used in our study which

count to seventeen. The configurations of experiments were same as for selected

process metrics.

The selected code metrics also showed the better results as compared to all code

metrics along all the five datasets. Most improvement was observed for the

equinox, eclipse-jdt and lucene which had improved results in all three perfor-

mance metrics.

The most improvement was calculated for equinox having a difference of 0.0472

in Mean Squared Error (MSE). The second best results were shown by eclipse-jdt

having difference of 0.0142 in Mean Squared Error (MSE). In case of eclipse-pde

and Mylyn, the performance also improved with Mylyn having Average Absolute

Error (AAE) difference of 0.0017 and eclipse-pde having Average Absolute Error

(AAE) difference of 0.0005.

The results are given in the following table (Table 4.5).
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Table 4.5: Performance Analysis using Code Metrics

Datasets All Code Metrics Selected Code Metrics

MSE AAE RRSE(%) MSE AAE RRSE(%)

Eclipse-
jdt

0.6587 0.3915 77.9088 0.6445 0.3865 77.0622

Equinox 1.1004 0.604 71.9684 1.0531 0.5956 70.4031

Lucene 0.3120 0.2234 93.926 0.3072 0.2188 93.2164

Mylyn 0.3221 0.2699 94.688 0.3274 0.2682 95.4731

Eclipse-
pde

0.8473 0.33 96.2691 0.8493 0.3295 96.3777

Following figure (Figure 4.3) contains the graphical representation of performance

of code metrics using AAE measure.

Figure 4.3: Selected Code Metrics Performance

These results of selected metric types also show that overall process metrics showed

better results than code metrics and selected metrics sets of each type (process

and code) performed better than their corresponding all metrics sets.
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4.4 Category wise Analysis

In the previous section we compared the performance of selected process and code

metrics subsets which were obtained using feature selection. These selected fea-

tures were combined into categories according to their nature and type which

are given in Table 4.1 and Table 4.2 in Feature selection section 4.1. We also

performed comparisons among categories of each (process and code) type of met-

rics separately. These results are explained in the following two sections first for

process metric categories and then for code metric categories.

4.4.1 Process Metrics Categories

The selected process metrics were divided into three categories which were Age

based, Author based and Change based. The comparison among these categories

were performed using random forest on all five datasets by selecting features of

one category at a time and results were compiled using MSE measure. The results

show that the best results were obtained for Change based category having least

MSE overall followed by Author based and Age based categories. The performance

of process metrics categories is given in Figure 4.4 and complete results are given

in Table 4.6.

Figure 4.4: Process Metrics Category wise Significance
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Table 4.6: Process Metrics Category Results

Datasets Age based Author based Change based

MSE AAE RRSE MSE AAE RRSE MSE AAE RRSE

Eclipse-
jdt

1.2274 0.5467 106.35 0.8636 0.4787 89.20 0.6936 0.421 79.94

Equinox 2.0811 0.7537 98.96 1.8193 0.794 92.53 1.1383 0.6243 73.19

Lucene 0.4541 0.2273 89.02 0.2579 0.2008 85.38 0.2125 0.1678 77.51

Mylyn 0.4275 0.2895 109.08 0.3576 0.3141 99.77 0.3739 0.2919 102.03

Eclipse-
pde

0.9172 0.3611 100.15 0.9048 0.3746 99.47 0.8512 0.3419 96.48

4.4.2 Code Metrics Categories

For evaluating selected code metrics categories which were five in number, no

category presented consistent performance for all five datasets. The Method Call

based, Cohesion based and Access based categories showed a minor reduction in

MSE in three out of five datasets as compared to other categories. It can be said

that all of the categories of selected code metrics are equally important in their

predictive ability. The comparison of selected code metrics categories can be seen

in Figure 4.5 and complete results are also given in Table 4.7.

Figure 4.5: Code Metrics Category wise Significance
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Table 4.7: Code Metrics Category Results

Dataset Access based Structure based Cohesion based Method Call
based

Inheritance
based

Mean
Square
Er-
ror
(MSE)

Avg
Ab-
so-
lute
Er-
ror
(AA-
E)

Root
Rel-
ative
Square
Error
(RRS-
E)

Mean
Square
Er-
ror
(MSE)

Avg
Ab-
so-
lute
Er-
ror
(AA-
E)

Root
Rel-
ative
Square
Error
(RRS-
E)

Mean
Square
Er-
ror
(MSE)

Avg
Ab-
so-
lute
Er-
ror
(AA-
E)

Root
Rel-
ative
Square
Er-
ror
(RRS-
E)

Mean
Square
Error
(MSE)

Avg
Ab-
so-
lute
Er-
ror
(AA-
E)

Root
Rel-
ative
Square
Er-
ror
(RRS-
E)

Mean
Square
Er-
ror
(MSE)

Avg
Ab-
so-
lute
Er-
ror
(AA-
E)

Root
Rel-
ative
Square
Error
(RRS-
E)

Eclipse-
jdt

1.0052 0.5207 96.25 0.9357 0.4595 92.86 1.1885 0.539 104.65 0.9262 0.4633 92.38 0.9262 0.4633 92.38

Equinox 1.9912 0.8505 96.81 1.3675 0.6376 80.22 1.3799 0.7155 80.59 1.1008 0.65 71.98 1.1008 0.65 71.98

Lucene 0.4413 0.2479 111.71 0.4582 0.2557 113.83 0.3653 0.238 101.64 0.3470 0.2298 99.07 0.3470 0.2298 99.07

Mylyn 0.3425 0.281 97.64 0.3920 0.2823 104.46 0.3808 0.3059 102.97 0.3997 0.2856 105.49 0.3997 0.2856 105.49

Eclipse-
pde

0.8955 0.3542 98.97 0.9397 0.3452 101.38 0.9297 0.3722 100.83 1.0046 0.3782 104.82 1.0046 0.3782 104.82
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4.5 Individual Feature Evaluation

After performing comparisons of types of selected metrics and their categories,

we also evaluated the effectiveness and importance of each metric among selected

process and code metrics. Again, the configurations were same as before with

random forest as machine learning model and 10-fold cross validation. We per-

formed experiments by individually selecting selected metrics for model building

and arranged the results according to metrics type (process and code) using MSE.

Results of individual process metrics can be seen in Figure 4.6. Among the seven

selected process metrics, number Of Authors performed best for all five datasets

followed by number Of Versions having reduced MSE for four datasets. The age

With Respect To, number Of Fixes and number Of Refactorings showed better re-

sults for three datsets whereas weightedAge With Respect To and avgCodeChurn

had highest MSE in all five datasets.

Figure 4.6: Selected Process Metrics Significance

When comparing the selected code metrics, similar variable pattern of performance

was observed as was seen in process metrics. Among eleven code metrics, none

performed better for all five datasets. The best results were calculated for FanOut

which showed reduced MSE in four datasets.
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Six metrics; numberOfAttributesInherited, DIT, numberOfPrivateMethods, NOC,

numberOfPublicAttributes and numberOfLinesOfCode performed better in three

datasets. Three code metrics namely numberOfMethodsInherited, lcom and fanIn

performed better in two out of five datasets whereas, numberOfAttributes had

lower MSE in one dataset only. The results of individual selected code metrics can

be seen in the following figure (Figure 4.7):

Figure 4.7: Selected Code Metrics Significance

4.6 Comparison with Existing Work

For validation of our results, we have compared our hybrid selection results with

the results presented in [19]. We have chosen this paper for our results validation

because it uses the same regression datasets as used in our paper and performed

ensemble machine learning modeling to predict the number of faults in a software

system. It is to be noted that there are very few studies that used the same eclipse

datasets and majority of them are based on classification problem.

In [19], the authors have used the same five eclipse dataset for their ensemble

machine learning models using 15 process metrics and number of faults. They
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have presented their results in form of AAE as performance measure which we used

with our results for comparison. The following table shows our hybrid selection

and process metrics selection results along with results of [19].

Table 4.8: Results Validation

Datasets Our Results (AAE) Results in [19] (AAE)

Selected
Hy-
brid(18)

Selected
Pro-
cess(7)

LRCR
Ensem-
ble

GRCR
Ensem-
ble

Eclipse-
jdt

0.38 0.40 0.55 0.42

Equinox 0.54 0.55 0.61 0.6

Lucene 0.18 0.16 0.15 0.09

Mylyn 0.25 0.26 0.19 0.2

Eclipse-
pde

0.32 0.32 0.2 0.22

The results show that our selection of features and machine learning (ML) model

clearly outperforms in Eclipse-jdt and Equinox datasets not only in terms of pro-

cess metrics, but the hybrid selection further improves the results and reduce error

in prediction.

For Lucene, Mylyn and Eclipse-pde, our results do not show improvement in com-

parison to results presented by [19]. The reason behind this is that in the target

paper, the authors have used minority oversampling techniques like SMOTER to

balance their data and increase the number of non-zero instances, whereas in our

experiments we have not engineered the datasets to preserve data credibility and

produce accurate results.

Our results not only prove the importance and effectiveness of feature selection

process for software metrics but also show the significance of selected process and

code metrics which performed better as compared to all process and code metrics

used in this study.
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4.7 Discussions and Implications

In the field of software fault prediction, software metrics play a vital role in iden-

tifying loopholes and discrepancies. Extracting all relevant metrics and applying

them to extract useful information is a tiresome process. A handsome amount of

effort related to SFP is spent in obtaining and utilizing software metrics. Such is-

sues require counter measures like feature selection to limit the amount of metrics

which are particularly important for SFP process. Researchers have worked in the

field of feature selection for software fault prediction but most of the research is

focused on classification of faults using code metrics.

The findings of our research suggest that process metrics play an important role

in fault prediction. They are equally informative and perform very well specially

when combined with code metrics for fault prediction. By using feature selec-

tion, fault prediction process can be turned efficient and inexpensive in terms of

resources. The hybrid feature set which was collected in this research by using

wrapper subset selection, provides better results for prediction of number of faults

when compared with all feature set. Utilizing a small amount of more significant

features can make the SFP process not only cost effective but also more efficient

accurate. We have also investigated the performance of different types of metrics

against their selected subsets and the impact of different categories of software

metrics in comparison with each other. Moreover, performance of each of the

selected metrics is also presented.

Our research covers the aspects of feature selection for number of faults prediction.

We have compiled and compared results of selected features, metrics categories and

individual metric importance but there are also boundaries to our research which

can be explored further to improve and extend our research. For example, our

experiments were performed using five datasets. The number of instances in these

datasets is quite small. If we can find and add more relevant datasets to our

experimentation, results may improve to some extent. Investigating the results

using more accurate machine learning ensembles can also enhance the output of

this research.
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Moreover, following are the answers of our research questions that were mentioned

in Chapter 1. These answers have been identified after doing literature review and

experimentation.

RQ1: What is the performance of process metrics as compared to code

metrics in software fault prediction?

Our results indicate that the process metrics provided better results than the code

metrics for number of software faults prediction. Process metrics yielded better

MSE results than code metrics. The comparison of these results can be seen in

section 4.3.

RQ2: Which process and code metrics subsets are most important in

terms of performance for prediction of number of faults?

According to our findings, the subsets of process and code metrics given in section

4.1 are the most influential and significant subsets of metrics for predicting count

of faults in software fault predictions which were selected using wrapper feature

selection. The selected metrics from both types were added to form hybrid metrics

subset and this hybrid subset of process and code metrics performed remarkably

better than all metrics set. The hybrid subset showed better results as compared

to all metrics set in all five datasets. The results given in section 4.2 can justify

this finding.

RQ3: What is the effectiveness of different categories and individual

selected process and code metrics?

The comparison of categories of selected metrics showed that change based cate-

gory of process metrics outperformed other process metric categories and in code

metrics categories, all categories performed equally well with method call based,

cohesion based and access based categories having slightly better performance

than rest of code metric categories. Individually, number of Authors and number

of Version performed better in selected process metrics and fanout performed best

in selected code metrics.



Chapter 5

Conclusion and Future Work

In the previous chapter, we have elucidated the details about the results that

have been obtained by applying the proposed methodology and also these results

are discussed in detail. In this chapter, we summarize our work and present a

conclusion of the research we performed. As well as, we have identified some of

probable directions for future research in this area.

5.1 Conclusion

The findings of our research include the investigation and selection of most impor-

tant process and code metrics. We have done this selection using wrapper-based

feature subset selection method. The selection was performed for finding num-

ber of software faults. We used five eclipse datasets for training and testing our

machine learning ensemble model. For modeling we used random forests with

10-fold cross validation to produce accurate and generalized results as many re-

searchers have claimed random forest to produce better results as compared to

other traditional machine learners.

For improving number of faults prediction process and our results, we added se-

lected process and code metrics to form a set of hybrid metrics composed of sig-

nificant process and code metrics. Furthermore, for comparison we combined all

44
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process and all code metrics used in our research, and compared the results of

experiments on all metrics to selected hybrid metrics results. The hybrid metrics

provided better results as compared to all metrics. Another finding of our research

is that the selected process metrics set showed better performance than selected

code metrics set.

We also investigated the significance of metric categories which showed that change

based metrics from process metric categories presented better results as compared

to other two categories of process metrics. For code metric categories, coupling

based category gave better results than structure based category. Later on, when

evaluating single metric significance, our results showed that number of versions

and number of authors from selected process metrics provided better results and

fanout presented better results in selected code metrics.

To conclude our research, we can say that the set of hybrid features which were

identified in our study proved to be very significant and effective to predict the

number of software faults with more precision as compared to regular set of metrics.

Using this hybrid set, we can reduce the cost of collection of metrics as well as

add efficiency and accuracy to prediction process.

5.2 Future Work

To further enhancement and vast the area of our research, we can add more bigger

(larger number of instances) and diverse (related to different software) datasets to

testing and experimentation process in the future. Besides, to improve further, we

can evaluate the performance of the new ensemble methods as compared to our

results. Moreover, in the future, we can also study the impact of class balancing

on prediction of number of software faults as it is usually observed that fault

prediction datasets are hugely imbalanced and number of instances in zero or no

defect class tend to dominate. In addition to that, we can also evaluate the effect

of different types of severity of bugs and impact of specific bug severity classes on

fault prediction.



Bibliography

[1] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of feature selection

on defect prediction performance: An empirical comparison,” in 2016 IEEE

27th International Symposium on Software Reliability Engineering (ISSRE).

IEEE, 2016, pp. 309–320.

[2] T. J. McCabe, “A complexity measure,” IEEE Transactions on software En-

gineering, no. 4, pp. 308–320, 1976.

[3] F. B. Abreu and R. Carapuça, “Object-oriented software engineering: Mea-

suring and controlling the development process,” in Proceedings of the 4th

international conference on software quality, vol. 186, 1994.

[4] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object

oriented design,” in Conference proceedings on Object-oriented programming

systems, languages, and applications, 1991, pp. 197–211.

[5] M. H. Halstead et al., Elements of software science. Elsevier New York,

1977, vol. 7.

[6] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling mea-

sures for c++,” in Proceedings of the 19th international conference on Soft-

ware engineering, 1997, pp. 412–421.

[7] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented

system,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. SI, pp.

259–262, 1995.

46



Bibliography 47

[8] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented de-

sign quality assessment,” IEEE Transactions on software engineering, vol. 28,

no. 1, pp. 4–17, 2002.

[9] J. C. Munson and S. G. Elbaum, “Code churn: A measure for estimating the

impact of code change,” in Proceedings. International Conference on Software

Maintenance (Cat. No. 98CB36272). IEEE, 1998, pp. 24–31.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault incidence

using software change history,” IEEE Transactions on software engineering,

vol. 26, no. 7, pp. 653–661, 2000.

[11] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and T. Zhang,

“Software defect prediction based on kernel pca and weighted extreme learn-

ing machine,” Information and Software Technology, vol. 106, pp. 182–200,

2019.

[12] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” IEEE Transactions on

Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

[13] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,”

in Third International Workshop on Predictor Models in Software Engineering

(PROMISE’07: ICSE Workshops 2007). IEEE, 2007, pp. 9–9.

[14] K. Gao and T. M. Khoshgoftaar, “A comprehensive empirical study of

count models for software fault prediction,” IEEE Transactions on Reliability,

vol. 56, no. 2, pp. 223–236, 2007.

[15] H. Zhang, “An investigation of the relationships between lines of code and

defects,” in 2009 IEEE International Conference on Software Maintenance.

IEEE, 2009, pp. 274–283.

[16] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to pre-

dict software defects,” Models and Methods of System Dependability. Oficyna

Wydawnicza Politechniki Wroc lawskiej, pp. 69–81, 2010.



Bibliography 48

[17] E. Erturk and E. A. Sezer, “Iterative software fault prediction with a hybrid

approach,” Applied Soft Computing, vol. 49, pp. 1020–1033, 2016.

[18] R. A. Fagundes, R. M. Souza, and F. J. Cysneiros, “Zero-inflated prediction

model in software-fault data,” IET Software, vol. 10, no. 1, pp. 1–9, 2016.

[19] S. S. Rathore and S. Kumar, “Towards an ensemble based system for predict-

ing the number of software faults,” Expert Systems with Applications, vol. 82,

pp. 357–382, 2017.

[20] R. Shatnawi, “The application of roc analysis in threshold identification, data

imbalance and metrics selection for software fault prediction,” Innovations in

Systems and Software Engineering, vol. 13, no. 2-3, pp. 201–217, 2017.

[21] S. S. Rathore and S. Kumar, “Linear and non-linear heterogeneous ensemble

methods to predict the number of faults in software systems,” Knowledge-

Based Systems, vol. 119, pp. 232–256, 2017.

[22] S. R. Aziz, T. Khan, and A. Nadeem, “Experimental validation of inheritance

metrics’ impact on software fault prediction,” IEEE Access, vol. 7, pp. 85 262–

85 275, 2019.

[23] M. Rizwan, A. Nadeem, and M. A. Sindhu, “Empirical evaluation of cou-

pling metrics in software fault prediction,” in 2020 17th International Bhur-

ban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2020,

pp. 434–440.
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